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Abstract—Personalisation has become omnipresent in society.
For the domain of health and wellbeing such personalisation can
contribute to better interventions and improved health states of
users. In order for personalisation to be effective in this domain,
it needs to be performed quickly and with minimal impact on the
users. Reinforcement learning is one of the techniques that can
be used to establish such personalisation, but it is not known to
be very fast at learning. Cluster-based reinforcement learning has
been proposed to improve the learning speed. Here, users who
show similar behaviour are clustered and one policy is learned for
each individual cluster. An important factor in this effort is the
method used for clustering, which has the potential to influence
the benefit of such an approach. In this paper, we propose
three distance metrics based on the state of the users (Euclidean
distance, Dynamic Time Warping, and high-level features) and
apply different clustering techniques given these distance metrics
to study their impact on the overall performance. We evaluate
the different methods in a simulator with users spawned from
very distinct user profiles as well as overlapping user profiles.
The results show that clustering configurations using high-level
features significantly outperform regular reinforcement learning
without clustering (which either learn one policy for all or one
policy per individual).

Index Terms—Health care, Reinforcement Learning, Personal-
ization

I. INTRODUCTION

Personalisation is defined by [1] as “a process that changes
the functionality, interface, information access and content, or
distinctiveness of a system to increase its personal relevance
to an individual or a category of individuals”. Personalisation
has become omnipresent in our society (e.g. [2]–[5]). While
applications were historically limited to web shops and alike,
a whole range of applications can nowadays be seen.

What technique is best suited to obtain personalisation
depends greatly on the task at hand. Take personalisation for
health and wellbeing. In such a setting one aims to perform
actions to influence the behaviour and physical state of the
user to improve the overall health state. The health setting
is challenging: consequences and appropriateness of actions
cannot be observed immediately. Some actions might have a
negative impact at first, only showing benefit in the distant
future. In addition, the appropriateness of actions is likely

very dependent on the user context. One technique which
can be used for personalisation fits this setting very well is
reinforcement learning (cf. [5]). Unfortunately it does have its
downsides: the learning process can be very slow (requiring a
lot of experiences) and exploring undesired or ineffective parts
of the action space can lead to user disengagement.

Several approaches have been proposed to overcome these
problems. One set of approaches includes the usage of transfer
learning, i.e. reusing previously generated policies (cf. [6]).
Alternatively, [7] have proposed to cluster users to make
the reinforcement learning process more effective while still
enabling a level of personalisation. In the case of [8], users
are assigned to a cluster after some initial period, and a policy
is learned per cluster. While the initial results are promising,
the results highly depend on the quality of the clustering (cf.
[8]), i.e. whether the users in a cluster are sufficiently alike in
terms of the policy that works best for them.

In this paper, we explore cluster-based reinforcement learn-
ing more in depth, focusing on the approach to cluster users.
We define different distance metrics based on the states of
the users (based on the Euclidean distance, Dynamic Time
Warping cf. [9], and by deriving high-level features), and
combine them with two well-known clustering techniques
(Agglomerative Clustering and K-Medoids). Next, we study
the influence of the choice upon the overall performance in
terms of personalisation. In addition, we investigate how the
presence or absence of very distinct groups of users impacts
the benefit of using cluster-based reinforcement learning. We
make use of an existing simulation environment [8] which
allows the simulation of users in a health context (focused on
getting people to perform sufficient daily physical exercise).
Using such a simulator allows us to easily manipulate users,
their behaviour and the existence of distinct profiles, hence,
it allows us to purely focus on the clustering techniques
themselves.

This paper is organized as follows. First, we will describe
related work in Section 2. Section 3 details our proposed
clustering approach, while Section 4 briefly describes the
simulator we use for our experiments. The experimental setup



is described in Section 5 and the results in Section 6.

II. RELATED WORK

As discussed in the introduction we use reinforcement
learning as a mean to learn when to give the intervention to the
user (in our case the generated agent). Reinforcement learning
has not been applied frequently in health intervention settings
while it is well suited for these types of problems (see e.g.
[10], [11]). There are however some papers that have already
explored its suitability.

[12] proposed the use of reinforcement learning to help
decide on the correct type of message needed to be sent to
users of a mobile application affected with diabetes type 2
to encourage physical activity. The role of the reinforcement
learner was to correctly choose the type of message that would
most effectively encourage the patient to increase his/her
physical activity (which is beneficial for patients with diabetes
type 2). This case is an example of a one-size fits all model.

[7] addresses the problem with using either a one-size
fits all policy and using individual learning. They suggest the
use of clustering to achieve a balance between the amount of
data available to the learner and the individual personalisation.
They show that with the cluster-based reinforcement learning,
they manage to achieve higher values of reward compared to
both other methods, though they assumed a fixed clustering
approach and the action space was limited.

Whilst the previous studies have commonalities with our
work, the most similar study is [8]. Here the authors expand
on the work of [7] and built a dedicated simulator to evaluate
the approach for more difficult scenarios. That same simulator
is used in our study. Furthermore, we wish to employ the
setting used by [8] whilst expanding the clustering analysis
component.

Lastly, our work also contains similarities to transfer learn-
ing [6] where a learned policy from one task can be transferred
to another, which in our case could apply to the use of the
learned policy from one user (or group of users) to a new user.
This is not done in our particular study due to the assumption
of a universal timeline for all agents generated.

III. APPROACH

As explained before, we exploit cluster-based reinforce-
ment learning to improve the learning speed of reinforcement
learning algorithms in a health and wellbeing context. Here,
we focus on learning how to provide the most effective
interventions to improve the future health state of the user. Our
precise case study will be explained in the next section. In this
section, we focus on the reinforcement learning component
first. As a starting point, we formulate the problem. We will
use a model-free reinforcement learning formulation. After
we have defined this formally, we will focus on learning
reinforcement learning policies for users. Then we will go to
the main contribution of this paper, namely the introduction
of different clustering approaches to cluster users and learn
policies over such clusters to improve the learning speed and
quality.

A. Reinforcement Learning Problem Formulation

The problem we are facing is a control problem, which we
model using a Markov Decision Process (MDP) [10]. This
formulation follows (cf. [8]). In our formulation, we identify
a user with the subscript u (with u ∈ U ). The MDP for our
problem can be specified as Mu = 〈Su, I, Tu, Ru〉. Here, Su
specifies the user states, and I represents the interventions that
can be selected (i.e. actions in reinforcement learning terms).
Tu specifies the probabilistic transition function of a user u and
is defined as follows Tu :: Su×I×Su → [0, 1]. This function
expresses the probability of moving from one user state to
another, provided that we have selected an intervention from I .
Ru is the reward function, which assigns a reward based on the
observed state su and the intervention i ∈ I provided to user
u. Since we are dealing with human subjects in our setting,
we cannot assume complete knowledge. Tu cannot be directly
accessed (i.e. we assume it to be unknown). Furthermore, we
cannot observe the full state, but only a vector of features φ
derived from the state su ∈ Su. Considering p features we
specify this vector as follows: φ(su) = 〈φ1(su), . . . , φp(su)〉.
While we cannot know up front whether the process in
fact satisfies the Markov property, we assume the process
to be sufficiently close such that we can employ standard
reinforcement learning algorithms.

Given this problem formulation, we want to learn a policy
πu per user, that expresses what intervention should be se-
lected in which state π :: Su → I . Applying such a policy
results in experiences for each time point t: 〈φ(stu), rtu, i

t〉.
Here, we use t to identify the specific time point. These
experiences together accumulate in traces (referred to as Σ)
for each user u: Σu (with T being the last time point):

〈φ(stu), rtu, i
t, φ(st+1

u ), rt+1
u , it+1, . . . , φ(sTu ), rTu , i

T 〉 (1)

We define the value of doing intervention i in state s as:

Qπ(s, i) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, it = i} (2)

γ is a discount factor for future rewards. Then, the policy
we strive to find maximizes this value (i.e. selects the best
interventions in each state):

π′(s) = arg max
i
Qπ(s, i), ∀s ∈ S (3)

To find such a policy, we deploy an off-policy reinforce-
ment learning algorithm, namely Least Square Policy Iteration
(LSPI) [13]. This uses the feature vector of the state (φ(s))
and finds a linear approximation of the Q function by means
of a weight vector 〈w1, . . . , wp〉 containing a weight for each
of our p features from a batch of experiences. Different alter-
natives are possible, but this is outside the scope of this paper.
The techniques explained below are however independent of
the specific reinforcement learning algorithm that is selected.



B. Learning Policies

One of the problems when dealing with human users is
that there is hardly room for an exploratory phase in which
a lot of different actions can be tried. Furthermore, the state
space (even when using our feature vector φ) is potentially
very large. When we learn our policy, we can make a choice
how user specific we want to learning such a policy. We can:
• learn one policy over all users (Pooled approach)
• learn one policy per user (Separate approach)
• learn one policy per group of similar users (Clustering

approach)
The first two options are simple. For learning, we can

simply vary what experiences we feed to our reinforcement
learning algorithm. For learning one policy over all users, we
provide Σ = {Σu|u ∈ U} and generate a single policy across
all users. For learning a policy for a single user, we only
provide the experience for that user: Σ = {Σu}. Both options
come with downsides. Learning one policy across all users
will highly likely result in insufficiently tailored interventions,
while learning per individual will suffer from a lack of
experiences to learn a reasonable policy in a short time frame.
We therefore study learning across groups of users that seem
to be relatively alike (following [8]). We define these groups
using clustering techniques, and want to learn policies per
cluster. We provide the learning algorithm with the following
experiences: Σ = {Σu|u ∈ C}. While learning across such
clusters has already shown to be beneficial (cf. [8]), the impact
of the clustering approach itself has not been studied in depth.

C. Clustering

In order to define clusters, we need to have (1) a clustering
technique, and (2) a distance metric. Let us consider the
distance metric first. We will refer to the distance between
a user u1 and user u2 as d(u1, u2). What can we base this
distance metric on? Initially, we assume to have no knowledge
about the specific users (and hence, we cannot determine a
distance between users). We therefore start with a so-called
warm-up phase where we gather experiences of users with
a random policy. Once collected, we can define a distance
between the experiences we have gathered for the users. These
experiences are in fact temporal sequences of the information
we have available about the user at each time point (the
features describing the state of the user, the intervention, and
reward information). We define three distance metrics between
experiences of users: (1) using the Euclidean distance, (2)
using Dynamic Time Warping (cf. [8]), and (3) using derived
features.

For the Euclidean distance, we measure the distance be-
tween the states of the user, and do not consider the actions and
rewards. The rational behind our decision on only including
the states is because the states are a closer representation of
the behaviour of the agent as defined by the profile settings.
We did not want to include information that is more dependant
on the setup of the learner in the clustering of the agents. We
assume that the feature vector φ (representing what we observe

about the state f the user) only contains numerical features.
If there are categorical features, we can encode categorical
features using one hot encoding. To calculate the distance we
simply compare the difference between the state features as
follows:

dED(u1, u2) =

T∑
t=0

√√√√ p∑
i=1

(φi(stu1
)− φi(stu1

))2 (4)

In this calculation, we assume that the sequences of both
users are of equal length and their start times have been
synchronized. The second approach considers Dynamic Time
Warping (DTW) [9]. This allows for a more flexible matching
between the experiences of users, where the speed of the
sequences might be different. As a basic building block, a
distance function between two experiences of users is defined:

dED(ut1, u
t′

2 ) =

√√√√ p∑
i=1

(φi(stu1
)− φi(st′u1

))2 (5)

Again, we only consider distances between the features of the
states. DTW tries to match time points in order to minimize
the sum of the distances over time points provided that: (1)
the first and last time points of both sequences are matched,
and (2) a monotonicity condition is satisfied. See [9] for more
details. For the DTW, we split the sets of experiences into
a number of intervals of k discrete time points within which
we perform the DTW (i.e. [t, . . . , (t + k)), . . . [(T − k), T )).
For example, think of splitting the sequences of experiences
into days, and comparing how equal the states within a day
are. This is done for computational reasons, but also because
we do not want to match outside of these boundaries to avoid
overly optimistic matches over days. The overall user distance
is defined as:

dDTW (u1, u2) =

T/k∑
i=0

dtw(〈φ(si·ku1
), . . . , φ(si·k+(k−1)

u1
)〉,

〈φ(si·ku2
), . . . , φ(si·k+(k−1)

u2
)〉)

(6)

The final distance metric we consider is derived features
from the sequences of experiences and comparing on that
higher level. An example is to derive the average values per
feature over the entire series of experiences and compute the
distance between those averages:

dDF (u1, u2) =

√√√√ p∑
i=1

(∑T
t=0 φi(s

t
u1

)

|{0, . . . , T}|
−
∑T
t=0 φi(s

t
u2

)

|{0, . . . , T}|

)2

(7)
Given these distance metrics, we can apply standard clus-

tering techniques (which we deliberately leave open in this
approach). These are commonly parameterized algorithms,
which require a selection of the number of cluster (e.g. k
in K-Medoids clustering) or a threshold to be set which in



fact determines the number of clusters (e.g. in Hierarchical
Clustering). To select the best value for a parameter, we use
an evaluation metric commonly used in clustering to evaluate
the quality of the clusters: the silhouette (cf. [14]). We run the
clustering algorithms for various parameter settings and select
the setting which results in the highest quality clustering with
this metric.

IV. SIMULATOR

To test our approach, we utilize a simulation environment1

which is able to generate realistic behaviour of human-like
agents for a health and wellbeing setting. The simulator we
use is described more extensively in [8]. It focuses on trying
to coach people towards a healthier lifestyle by engaging them
more in sports, a common goal among health apps available in
the iTunes or Google Play store [15]. The simulator emulates
the behavior of human beings by generating their activities
throughout the day (e.g. working, eating, working out) as well
as their responses to interventions they receive in the form
of messages that encourage them to work out. How schedules
and responses are generated is based on certain generic profiles
(e.g. think of an average working person). States are observed
once per hour. The features of the state (φ) are the current
day of the week, the current hour of the day, if the agent has
worked out within the current day, the fatigue level and which
of the possible activities he performed in the captured hour.

As said, the acceptance of the intervention depends on the
schedule of the agent, their fatigue level, as well as their
profile. The reward is given based on a few conditions. If
the agent accepts the intervention given, a reward of +1 is
recorded, whilst if the intervention is rejected then a negative
reward of -0.5 is returned. If the intervention was accepted an
extra reward of +10 is given when the workout is completed.
The duration of the workout can also be considered but for
our setup we have decided not to do so. The final condition
that can score reward is the level of fatigue of the agent. The
amount of negative reward recorded increases with the amount
of fatigue. For our case fatigue is defined as an incremental
integer that starts from 0 and increases for every consecutive
workout. The moment the agent skips, rejects or is not told
to workout the fatigue level is reset to 0. As an example, if
an agent works out three days in a row (each day working
out once) its current fatigue level is equal to three. When the
fourth day the agent does not workout the fatigue level gets
reset.

For our investigation, we use sets of three profiles from
which agents are spawned. The technicalities of each profile
used are explained in subsection V-C. The simulator has been
implemented in Python3.

V. EXPERIMENTAL SETUP

In order to evaluate our approach, we perform a number
of experiments. In this section, we explain the different

1‘https://github.com/EMGrua/MultiAgentSimulation-
MultiClusterVariation’

experimental conditions, the performance evaluation, and the
parameters and simulator settings.

A. Experimental Conditions

We are interested in studying the performance of our cluster
based learning approach compared to the two alternative vari-
ations we mentioned in Section III-B (pooled and separate).
In addition, we want to understand how the distance metric
and the selected clustering algorithm impacts performance. We
use our three distance functions and combine these with two
commonly known clustering algorithms, namely K-Medoids
clustering [16] and Hierarchical Clustering (Agglomerative
Clustering, using the complete linkage criterion) [17]. While
more advanced clustering algorithms are available, we want to
start with relatively simple approaches which can also easily be
combined with the various distance functions chosen. Overall,
this results in 2×3 = 6 variations for the clustering. Thus we
have 8 variations of the reinforcement learning algorithm in
total.

How easily groups of users can be distinguished (and
whether they are present or not) is likely to have a severe
impact on the advantage of using a cluster-based approach.
To study this influence, we try two different setups of our
simulation environment. One setup features three highly dis-
tinctive profiles (both in terms of their daily schedules and
responses to the received interventions) while the second setup
will again be three profiles but with two being very difficult
to distinguish. Subsection V-C shows the specification of the
profiles used in both settings.

B. Performance Evaluation

To evaluate the performance of the algorithms, we focus on
two aspects.

To study the performance of the clustering itself, we apply
clustering to the traces of experiences we collect during the
warm-up phase in which we apply a random policy. We study
the users residing in the resulting clusters and consider the
original profiles they were spawned from. A desirable outcome
would be to see low diversity of profiles within a single cluster.
We perform five runs per clustering algorithm as the results are
highly dependent on the random initialization of the centres
(certainly for K-Medoids).

The second evaluation is the performance of the reinforce-
ment learning algorithm and the resulting reward. Hereto, we
consider the average reward we obtain. Next to the aforemen-
tioned warm-up period, we apply a learning period during
which we measure the reward. For all variants, after the warm-
up days we create a policy using LSPI and train each LSPI
instance over the traces of the associated agents. Each policy
is then updated on a daily basis over the remaining learning
period and used to select the interventions. We compute the
average daily rewards over all runs, agents and time points per
day (called the average daily reward).

The best performing clustering configurations will be se-
lected and compared to both the separate and the pooled
cases. To determine whether the difference between trends is



statistically significant we used the Wilcoxon signed-rank test.
We define various levels of significance: one star (?: P ≤ 0.05);
2 stars (??: P ≤ 0.01), and three stars (? ? ?: P ≤ 0.001).

C. Parameter and Simulator Settings
For each experiment the simulation was ran with a constant

set of parameters. These parameters were chosen based on
preliminary experiments and feasibility of the run times. The
parameters chosen were:
• Number of agents: the number of agents for all runs

was set to 100, with the agent profiles being equally
distributed among them, so we always expect a profile
distribution of 33-33-34.

• Warm-up phase: the ‘warm-up phase’ was set for all runs
to 7 days.

• Learning phase: the ‘learning phase’ was set to 60 days
(which is enough to obtain a stable policy).

The simulation parameters that were changed according to the
executed experiment were the profile types. Below we list the
two sets used (distinct and overlapping) as well as the key
differences between each type of profile. The distinct profiles
are:
• Worker: works 5 days a week plus he has a 80% of

working on the sixth day (Saturday). The Worker starts
anywhere from 8 a.m. to 9 a.m. and works for 10 to 11
hours. Gets fatigued after 2 consecutive workouts and has
a 10% chance of accepting a second workout in the same
day.

• Athlete: works 3 days a week (Monday, Tuesday and
Thursday) starting from around 9 a.m. for 8 hours. The
athlete gets fatigued after 4 consecutive workouts and has
a 50% chance of accepting a second workout in the same
day.

• Retired: never works. The retiree gets fatigued after one
workout and will never accept a second workout on the
same day.

The overlapping profiles are:
• newWorker: identical to Worker but does not have a

chance of working a sixth day. The newWorker is also
identical in the way it behaves with working out and
fatigue pattern.

• newAthlete: identical to the athlete but has a 60% chance
of working on Wednesday and a equal chance of working
on Friday. NewAthlete is also identical to Athlete in the
fatigue and workout settings.

• Athlete: identical to the previously described athlete.
It is important to remember that apart from these differences

all of the profiles include routine actions, such as eating
(breakfast, lunch, dinner) and sleeping.

VI. RESULTS

In this section, we present the results we obtained using the
experimental setup we have just described. We start with the
analysis of the clusters, followed by the performance of the
reinforcement learning techniques2.

2The data can be found here:‘http://doi.org/10.5281/zenodo.1215905’

TABLE I
NUMBER OF CLUSTERS RETURNED BY EACH EXPERIMENTAL CASE (FOR

THE DISTINCT PROFILE CASE)

run1 run2 run3 run4 run5 Mode Median
keu 2 2 3 3 4 2,3 3
heu 6 4 6 2 3 6 4
kdtw 3 3 3 4 3 3 3
hdtw 2 4 4 3 5 4 4
kdf 3 3 4 3 3 3 3
hdf 3 3 3 3 3 3 3

A. Clustering Analysis

Let us analyse the clusters found for the two different profile
setups.

1) Distinct Profiles: Let us first consider the distinct profile
case. Table I provides an overview of the results we obtained.
Each row represents one of these variations whilst the first
5 columns show the number of clusters found per run. The
following columns show the mode value/s of the number of
clusters for the set of runs and the median. In order to keep
the following tables and graphs clear and compact we have
abbreviated the various experimental cases as follows:

k : is used when the clustering technique used was K-
medoids.

h : is used for when Hierarchical Clustering was
utilised

eu : stands for the Euclidean distance metric
dtw : signifies the use of Dynamic Time Warping
df : indicates the use of the derived features

An example abbreviation is ‘keu’. This abbreviation stands
for the experimental setup that used K-Medoids as clustering
algorithm with the use of the Euclidean distance metric on
features directly related to the state. In contrast ‘kdf’ is the
same but with the use of the derived features.

Important to note that in the ‘kdf’ and the ‘hdf’ median
cases the resulting clustering of the agents corresponded to the
perfect distribution of the profiles to the agents. Furthermore
the ‘kdtw’ median case resulted in near perfect clustering;
cluster A contained 31 out of 33 athlete agents and one
retiree agent, cluster B contained the remaining 2 athlete
agents and the rest of the retiree agents with the last cluster
only containing all of the Worker type agents. In the case
of ‘keu’ even though three clusters are found, one of the
clusters contains most of the agents, with the second cluster
containing 3 athlete agents and 7 retiree agents and the last
cluster containing only one athelete agent. Similar happened
with the ‘heu’ case, where one cluster contains most agents
and the others only have a few.

2) Overlapping Profiles: For the overlapping profiles the
results are shown in Table II. The major outcomes that can
be taken away from the table are that in hardly any run three
clusters were found. Furthermore, it is interesting to note that
in the methods using the derived features, one of the clusters
contained most, if not all, of the ‘newWorker’ type agent.
Finally, a similar behaviour can be seen in the case of the
Hierarchical Clustering using DTW, but instead of dividing



TABLE II
NUMBER OF CLUSTERS RETURNED BY EACH EXPERIMENTAL CASE (FOR

THE OVERLAPPING PROFILE CASE)

run1 run2 run3 run4 run5 Mode Median
keu 3 5 5 2 2 2,5 3
heu 2 2 2 2 2 2 2
kdtw 2 6 6 2 3 2,6 3
hdtw 2 2 2 2 2 2 2
kdf 2 2 2 2 2 2 2
hdf 2 2 2 6 2 2 2

the ‘newWorker’ agents from the rest, it divided the ‘Athlete’
type agents from the ‘newWorker’ and ‘newAthlete’ agents.

B. Reinforcement Learning Results

Given the clusters that have been found, we will study the
impact on the RL performances now.

1) Distinct Profiles: Within this subsection we will be
describing the results found by the reinforcement learning
analysis in terms of reward over time for the case of the distinct
profiles. The first table presented, Table III, shows a compre-
hensive overview of all of the experiments run. This overview
clearly shows that several of the cluster-based approaches
obtain higher cumulative rewards compared to the pooled and
separate cases. It seems that the derived features perform best,
the Euclidean distance approaches perform worst, and the
DTW approaches reside in the middle (while still performing
better than the separate and pooled cases). The clustering
technique does not seem to have a severe impact on the overall
rewards that are obtained.

TABLE III
CUMULATIVE AVERAGE DAILY REWARD FOR ALL EXPERIMENTAL CASES

(DISTINCT)

KEU HEU KDTW HDTW
340.1 419.4 740.2 778.7
KDF HDF POOLED SEPARATE
878.3 889.5 310.0 681.9

Let us look into the rewards collected over time. To ease
comparison we have selected only four of the six clustering
methods used. To make the selection we have excluded the
two worst performing methods in terms of cumulative average
daily reward (both of the Euclidean distance cases). Note that
the performances during the warm up period are identical as a
random policy is followed. Analysing Fig. 1 we can notice a
recurring pattern that holds for all plots that will be presented,
all of the reward trends have the same kind of ‘rhythm’ to
them. This is causes by the fatigue concept. What is important
to note in this particular figure is how K-Medoids with DTW
has consistently the lowest average reward. This suggests that
this method (in this particular case) was the least effective (out
of the four selected ones) in aiding the reinforcement learners
in producing effective policies.

Figure 2 illustrates the final two selected clustering methods
and compares it to the pooled and separate approaches.
To have a comprehensive comparison, we chose the best

Fig. 1. Plot of the Average Daily Reward over time for the four better
performing clustering methods

Fig. 2. Plot of the Average Daily Reward over time comparing the two
selected clustering methods and the two non-clustering methods (Separate
and Pooled)

clustering technique for the non-derived features and the best
one for the derived features. In this figure we can easily notice
how poorly the pooled aided at the creation of a good policy.
Furthermore, the daily average reward resulting from separate
appears to always be below our selected methods.

In order to draw critical conclusions from the comparison
we used the Wilcoxon signed-rank test on all possible com-
binations of the selected methods to find potential statistical
differences (as reported in Table IV).

TABLE IV
TABLE OF RETURNED WILCOXON P-VALUES FOR ALL OF THE SELECTED

EXPERIMENTAL METHODS (DISTINCT)

hdtw vs kdf pvalue=3.0675e-06???

hdtw vs separate pvalue=8.2819e-07???

hdf vs separate pvalue=3.0421e-10???

separate vs pooled pvalue=5.1079e-12???

hdtw vs pooled pvalue=4.8880e-12???

kdf vs pooled pvalue=5.8275e-12???

The table shows that all of the Fig. 2 plotted lines are indeed
statistically different from each-other (with the highest rating).

2) Overlapping Profiles: In this subsection we repeat the
analysis in the same mode as previously described, but on the
results obtained by the overlapping profiles.



TABLE V
CUMULATIVE AVERAGE DAILY REWARD FOR ALL EXPERIMENTAL CASES

(OVERLAPPING)

KEU HEU KDTW HDTW
1327.7 1281.7 1380.5 1248.9
KDF HDF POOLED SEPARATE

1586.9 1662.1 1312.4 1322.5

Similarly to Table III, Table V shows a comprehensive
overview of all of the experiments done within the overlapping
profiles case by illustrating the cumulative average daily
rewards. We see that again the derived features perform best,
also better than the pooled and separate approaches. This is
positive, since the clustering is less obvious for this case.

Fig. 3. Plot of the Average Daily Reward over time for the four better
performing clustering methods

By selecting the best four clustering methods, with the
same criteria as before, we have therefore discarded the two
Hierarchical Clustering cases not utilising the derived features.
Fig. 3 shows the results. Here we observe that the K-Medoids
Euclidean method is consistently scoring the lowest average
reward, and close to it is the K-Medoids DTW. This once
again illustrates the enhanced difficulty in clustering that the
‘overlapping profiles’ have, compared to the ‘distinct’ case.

Fig. 4. Plot of the Average Daily Reward over time comparing the two
selected clustering methods and the two non-clustering methods (Separate
and Pooled)

As of last, Fig. 4 shows the two chosen clustering methods

compared to the case of pooled and separate. For clarity, the
selection criterion of the final two clustering methods is the
same as the one used in the choice of the final two clustering
methods in the ‘distinct profile’ case. Furthermore, the pooled
case is once again the lowest of all cases, but is not reaching
negative values as it was happening in the other profile case.
This, plus the overall rise in average reward across all methods
can be attributed by the lack of the ‘Retired’ agent profile
combined with the profile’s low maximum fatigue threshold.

TABLE VI
TABLE OF RETURNED WILCOXON P-VALUES FOR ALL OF THE SELECTED

EXPERIMENTAL METHODS (OVERLAPPING)

kdtw vs hdf pvalue=8.6357e-12???

kdtw vs separate pvalue=0.0005???

hdf vs separate pvalue=1.0275e-11???

separate vs pooled pvalue=0.7477
kdtw vs pooled pvalue=0.0456?

hdf vs pooled pvalue=2.1030e-12???

Table VI presents the significance results. We want to
bring to the attention the now non-statistically significant
difference between the separate and the pooled methods and
how our selected DTW method, whilst remaining statistically
significant, has now a one-star p-value when compared to
the pooled method in contrast to the three-star significance
when the same comparison was made in the ‘distinct profiles’
scenario. Nonetheless, even though the ‘overlapping profiles’
case caused the clustering methods to produce what seemed
like worst clusters, we still outperformed both the separate
and pooled case in a statistically significant manner. Therefore
showing the benefit of using cluster based reinforcement
learning.

VII. DISCUSSION AND FUTURE WORK

With this study we set on exploring in more depth the
benefits that cluster-based reinforcement learning can have on
personalisation in the health and wellbeing domain. We set
up our study in-line with the related work we have found in
this field, and expanded the analysis on the different cluster
methodologies that can be used in this setting.

Our results show that with distinct profiles the clustering
methods utilising DTW and the derived features produced
good clusters that were either perfectly matching the profile
assignments or extremely close to it. For overlapping profiles,
we see that a logical division of the agents was made but it
still remains one that does not match the original assignment
of the profiles to the agents. For both cases we outperform the
separate and the pooled reinforcement learning approaches.
Here, the derived features approach performs best, but the dy-
namic time warping also performs reasonably well. This seems
even more remarkable given the somewhat poor clustering that
resulted in the case of the overlapping agent profiles. This
finding supports our initial intuition and the findings brought
forth by [7], [8].

As future work it would be good to expand on our study
and test other types of clustering techniques to see how the



reinforcement learner reacts to potentially different patterns
in the clusters. Another interesting variation to study would
be to dynamically change the clusters over the course of the
simulation, similarly as the reinforcement learner is continu-
ously updating its policy over time. Furthermore, we want to
apply the approach in a real life health setting and see whether
outcomes improve when using our approach compared to
alternative approaches. Finally, as mentioned in the related
work, another interesting aspect to investigate would be the
use of transfer learning and therefore dropping the assumption
that all agents are generated in the simulation at the same point
in time.
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