
A Reference Architecture for Personalized and
Self-adaptive e-Health Apps

Eoin Martino Grua1[0000−0002−5471−4338], Martina
De Sanctis2[0000−0002−9417−660X], and Patricia Lago1[0000−0002−2234−0845]

1 Vrije Universiteit Amsterdam, The Netherlands, {e.m.grua | p.lago}@vu.nl
2 Gran Sasso Science Institute, L’Aquila, Italy, martina.desanctis@gssi.it

Abstract. A wealth of e-Health mobile apps are available for many
purposes, such as life style improvement, mental coaching, etc. The in-
terventions, prompts, and encouragements of e-Health apps sometimes
take context into account (e.g., previous interactions or geographical lo-
cation of the user), but they still tend to be rigid, e.g., by using fixed
rule sets or being not sufficiently tailored towards individuals. Person-
alization to the different users’ characteristics and run-time adaptation
to their changing needs and context provide a great opportunity for get-
ting users continuously engaged and active, eventually leading to better
physical and mental conditions.
This paper presents a reference architecture for enabling AI-based per-
sonalization and self-adaptation of mobile apps for e-Health. The refer-
ence architecture makes use of multiple MAPE loops operating at differ-
ent levels of granularity and for different purposes.

Keywords: Self-adaptive systems · Personalization · Reference Archi-
tecture · Mobile apps · e-Health.

1 Introduction

E-Health mobile apps are designed for assisting end users in tracking and im-
proving their own health-related activities [28]. With a projected market growth
to US$102.3 Billion by 2023, e-Health apps represent a significant market [12]
providing a wide spectrum of services, i.e., life style improvement, mental coach-
ing, sport tracking, recording of medical data [24]. The unique characteristics
of e-Health apps w.r.t. other health-related software systems are that e-Health
apps (i) can take advantage of smartphone sensors, (ii) can reach an extremely
wide audience with low infrastructural investments, and (iii) can leverage the
intrinsic characteristics of the mobile medium (i.e., being always-on, personal,
and always-carried by the user) for providing timely and in-context services [9].

However, even if the interventions, prompts, and encouragements of current e-
Health apps take context into account (e.g., previous interactions or geographical
location of the user), they still tend to be rigid and not fully tailored to individual
users, e.g., by using fixed rule sets or by not considering the unique traits and
behavioral characteristics of the user. In this context, we see personalization [7]

2 E. M. Grua et al.

and self-adaptation [15,27] as effective instruments for getting users continuously
engaged and active, eventually leading to better physical and mental conditions.

In this work, we combine personalization and software self-adaptation to pro-
vide users of mobile e-Health apps with a better, more engaging and effective
experience. To this aim, we propose a reference architecture that combines data-
driven personalization with self-adaptation. The main design drivers that make
the proposed reference architecture unique are: (i) the combination of multi-
ple Monitor - Analyze - Plan - Execute (MAPE) loops [17] operating at
different levels of granularity and for different purposes, e.g., to suggest users the
most suitable and timely activities according to their (evolving) health-related
characteristics (e.g., active vs. less active), but also to cope with technical aspects
(e.g., connectivity hiccups, availability of IoT devices and third-party apps on the
user’s device) and the characteristics of the physical environment (e.g., indoor
vs. outdoor, weather); (ii) the exploitation of our online clustering algorithm
for efficiently managing the evolution of the behavior of users as multiple time
series evolving over time. This online clustering algorithm has been already ex-
tensively tested in a previously published article [14], showing promising results
by doing better than the current state-of-the-art.

The main characteristics of the proposed reference architecture are the fol-
lowing: (i) it caters the personalization of provided services to the specific user
preferences (e.g., preferred sport activities); (ii) it guarantees the correct func-
tioning of the provided features via the use of connected IoT devices (e.g., a
smart-bracelet) and runtime adaptation strategies; (iii) it adapts the provided
services depending on contextual factors such as environmental conditions and
weather; (iv) it supports a smooth participation of domain experts (e.g., psy-
chologists) in the personalization and self-adaptation processes; and (v) it can
be applied in the context of a single e-Health app and by integrating the services
of third-party e-Health apps (e.g., already installed sport trackers).

2 Background

The notion of reference architecture (RA) is borrowed from Volpato et al. [26],
who define it as “a special type of software architectures that provide a char-
acterization of software systems functionalities in specific application domains”,
e.g., SOA for service orientation and AUTOSAR for automotive. In the context
of this study, a self-adaptive software system is defined as a system that can
autonomously handle changes and uncertainties in its environment, the system
itself and its goals [27].

For the definition of personalization we build on that by Fan and Poole [7]
and define it as “a process that changes a system to increase its personal rele-
vance to an individual or a category of individuals”. Furthermore, to enhance
personalization, we use CluStream-GT (standing for: CluStream for Growing
Time-series) [14]. CluStream-GT was chosen for this RA as it is the state-of-
the-art clustering algorithm for time-series data (especially within the Health
domain). CluStream-GT works in two phases: offline and online. First, the of-

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 3

fline phase initializes the algorithm with a small initial dataset; this is done either
at design time or at the start of runtime. After, during the online phase the al-
gorithm clusters the data that is being collected at runtime. Clustering allows
the RA to group similar users together; where similarity is determined by the
data gathered from the apps. This gives the RA a more sustainable and scalable
method of personalization, without requiring to create individual personaliza-
tion strategies but maintaining a suitable degree of personalization [14, 19]. An
example case where clustering can be used to aid personalization is with the use
of cluster based Reinforcement Learning [13].

The methodology used for the design of our RA is the one presented by
Angelov et al. [2].

3 Related Work

Several RAs for IoT can be found in the literature [1,3,4,10]. In particular, Bauer
et al. [4] present several abstract architectural views and perspectives, which can
be differently instantiated. The adaptation of the system’s configuration is also
envisioned, at an abstract level. IoT-A [3] aims to be easily customized to dif-
ferent needs, and it makes use of axioms and relationships to define connections
among IoT entities. IIRA [1] is particularly tailored for industrial IoT systems.
WSO2 [10] presents a layered structure and targets scalability and security as-
pects too. All of the above RAs are abstract and domain independent. As such,
they do not address required features specific to the IoT-based e-Health domain.
Moreover, they lack the needed integration with AI for personalization used to
tailor interventions to the user’s health-related characteristics.

Other works providing service oriented architectures (SOAs) focused on adap-
tation but neglected user-based personalization. E.g., Feljan et al. [8] defined a
SOA for planning and execution (SOA-PE) in Cyber Physical Systems (CPS),
and Mohalik et al. [22] proposed a MAPE-K autonomic computing framework to
manage adaptivity in service-based CPS. Morais et al. [23] present RAH, a RA
for IoT-based e-Health apps. RAH has a layered structure, and it provides com-
ponents for the prevention, monitoring and detection of faults. Differently from
RAH, our RA explicitly manages the self-adaptation of the e-Health mobile app,
both at users- and architectural levels. Mizouni et al. [21] propose a framework
for designing and developing context-aware adaptive mobile apps. Their frame-
work lacks other types of adaptation, i.e., adaptation for user personalization
and adaptation with other IoT devices – which is possible with our RA.

Lopez and Condori-Fernandez [20] propose an architectural design for an
adaptive persuasive mobile app with the goal of improving medication adherence.
Accordingly, the adaptation is here focused only on the messages given to the
user and lacks the other levels of adaptation (environment adaptation, etc.) that
our RA covers. Kim [18] proposes a general RA that can be used when developing
adaptive apps and implements a e-Health app as an example. However, being it
general, the RA lacks the level of detail present in our work, the integration of

4 E. M. Grua et al.

AI for personalization, and a way for involving domain experts in the app design
and operation, which is essential in adaptive e-Health.

In summary, to the best of our knowledge, ours is the first RA for e-Health
mobile apps that simultaneously supports (i) personalization for the different
users, by exploiting the users’ smart objects and preferences to dynamically get
data about e.g., their mood and daily activities, and (ii) runtime adaptation to
the user-needs and context in order to keep them engaged and active.

4 Reference Architecture

Fig. 1 shows our RA3 with the following stakeholders and components.

 Smartphone

e-Health app

 Smartphone

e-Health app

User Process

Smart Objects

Internet

Environment Sources

App Store
Back-end

Domain
Expert

Development
Team

Data

U
se

rs

Distribute

Collected
Data

Release

Data

D
at

a

AI Personalization
Adaptation

Editor of
Abstract Activities
& Goals

Clustering History

Query

Create
& Modify

Collected Data

User Process

Notify

Notify

Back-end

U
pd

at
e

Ve
rif

y

Legend

information-flow
operation

MAPE loop

Update

Catalog of
Abstract Activities
& Goals

Catalog of
Supported Mobile
Applications

Query

D
at
as
to
re

Query

Query

Update

Update

U
pd

at
e

Manage

User Process
Handler

 AI Personalization

 Internet
 Connectivity
 Manager

 Smart Objects
 Manager

 Environment
 Driven
 Adaptation
 Manager

 User Driven
 Adaptation
 Manager

 Third-party
 Applications
 Manager

Data

Fig. 1: Reference architecture for Personalized and Self-adaptive e-Health Apps

Users provide and generate the Data gathered by the e-Health app. At the
first installation, the users are asked to input information to better understand
their aptitudes. After an initial usage phase and data collection, the system has
enough information to assign them to a cluster.

Smartphone is the host where the self-adaptive e-Health app is installed.
In the mobile app, four components, namely User Driven Adaptation Manager,
Environment Driven Adaptation Manager (UD Adaptation Manager and ED

3 For the interested reader, we have defined the corresponding viewpoint here:
http://s2group.cs.vu.nl/casa-2020-technical-report/

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 5

Adaptation Manager from here on, respectively), Smart Objects Manager and
Internet Connectivity Manager implement a MAPE loop to dynamically perform
adaptation. The Third-party Applications Manager, in turn, is responsible for the
communication with third-party apps supported by the RA that can be exploited
by the e-Health app both during its nominal execution and when adaptation is
performed. It is also responsible for storing the user’s preferences. Further details
on these components are given in Sec. 5.

Smart Objects are devices, other than the smartphone, that the app can
communicate with. They are used to gather additional data about the users as
well as augmenting the data collected by the smartphone sensors. For instance,
a smart-watch would be used by the app to track the user’s heart-rate, therefore
adding extra information on the real-time performance of the user.

Environment is the physical location of the user, and its measurable prop-
erties. It is used by the e-Health app to make runtime adaptations w.r.t. its
current operational context and to the user’s scheduled activities (see Sec. 5.5).

The back-end of our RA (right-hand side of Fig. 1) is Managed by a Devel-
opment team. It additionally exposes an interface to the Domain Expert that is
also involved in the e-Health app design and operation. The back-end contains
the components needed to store the collected user data and to manage the user
clusters. It also hosts components supporting the general functioning of the app.

User Process Handler is in charge of sending User Processes to the
users, by taking care of sending the same User Process to all users of the same
cluster. A User Process is composed of one or more Abstract Activities. These
activities are inspired by the ones introduced in [5], although they differ both in
the structure and in the way they are refined, as later explained. An Abstract
Activity is defined by a vector of one or more Activity categories and an associ-
ated goal, with each vector entry representing a day of the week4. For the sake
of space we leave the description of the formalization of the goal model to future
work.

Each Abstract Activity is defined by the Domain Expert via the Editor of
Abstract Activities & Goals and later stored in the Catalog of Abstract Activities
& Goals. Each Activity category identifies the kind of activity the user should
perform. As an example, the user can receive either a Cardio or Strength Activity
category and so should perform an activity of that kind. More precisely, for each
user, the Activity categories are converted to Concrete Activities at run-time via
the use of the UD Adaptation Manager and based on the user’s preferences. For
instance, a cardio Activity category can be instantiated into different Concrete
Activities such as running, swimming and walking. Moreover, if an Abstract
Activity is composed of multiple Activity categories, all or some of type Cardio,
they can be converted into different Concrete Activities. This implies that users
who receive the same User Process will still be likely to have different Concrete
Activities, therefore personalizing the experience to the individual user (this is
further discussed in Sec. 5.2).

4 Examples of Abstract Activities are shown here:
http://s2group.cs.vu.nl/casa-2020-technical-report/

6 E. M. Grua et al.

The User Process Handler receives Updates from (i) the AI Personalization
and (ii) the Editor of Abstract Activities & Goals in order to send User Processes
to their associated users. The AI Personalization Updates the User Process Han-
dler every time a user moves from one cluster to another, while the Editor of
Abstract Activities & Goals Updates it every time new clusters are analyzed by
the Domain Expert (along with the new associated User Process). These up-
dates guarantee that the User Process Handler remains up to date about the
User Processes and their associated users.

AI Personalization sends an Update to the Clustering History component
whenever a change occurs in the clusters. The AI Personalization component
uses the CluStream-GT algorithm to cluster users into clusters in a real-time
and online fashion [14]. It receives the input data from the e-Health app (see
Collected Data in Fig. 1). More than one instance of CluStream-GT can be
running at the same time. In fact, there is one instance per category of data.
E.g., if the e-Health app is recording both ecological momentary assessment [25]
and biometric data, one for the purpose of monitoring mood and the other for
fitness, there will be two running instances of the algorithm.

AI Personalization Adaptation is in charge of monitoring the evolution
of clusters and detecting if any change occurs. Examples include the merging of
two clusters or the generation of a new one. To do so, it periodically Queries

the Clustering History database. If one or more new clusters are detected, this
component will Notify both the Development Team and the Domain Expert.
The Domain Expert will examine the new information and add the appropriate
User Process to the Catalog of Abstract Activities & Goals via the dedicated
editor. In turn, the Development Team is notified just as a precaution so that it
can verify if the new cluster is not an anomaly. The specifics of the corresponding
MAPE loop are described in Sec. 5.1.

The role played by AI via the CluStream-GT algorithm is relevant in our RA
as it strongly supports both personalization and self-adaptation, thus guarantee-
ing a continuous user engagement that is crucial in e-Health apps. Specifically,
personalization is achieved by clustering the users based on their preferences and
their physical and mental condition. This supports the RA in assigning appro-
priate User Processes to each user, and further adapt them to continuously cope
with the current status of the user.

Clustering History is a database of all the clusters created by the AI
Personalization component. For each cluster it keeps all of the composing micro-
clusters with all of their contained information.

Editor of Abstract Activities & Goals allows the Domain Expert to
create and modify Abstract Activities (and their associated goals) and to combine
them as User Processes. This is achieved via a web-based interactive UI and the
editor’s ability to Query the Catalog of Abstract Activities & Goals. It is also
the editor’s responsibility to update the User Process Handler if any new User
Process has been created and is currently in use.

Catalog of Abstract Activities & Goals is a database of all User Pro-
cesses that the Domain Expert has created for each unique current and past

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 7

cluster. When a new cluster is defined, the Domain Expert can assign to it an
existing User Process from this catalog, or create a new one and store it.

Catalog of Supported Mobile Applications is a database containing
the metadata needed for interacting with supported third-party mobile apps in-
stalled on users’ devices. This database stores information such as the specific
types of Android intents (and their related extra data) needed for launching
each third-party app, the data it produces after a tracking session, etc. Indeed,
our e-Health app does not provide any specific functionality for executing the
activities suggested to the user (e.g., running, swimming); rather, it brings up
third-party apps (e.g., Strava5 for running and cycling, Swim.com6 for swim-
ming) and collects the data produced by the apps after the user performs the
physical activities. The main reasons for this design decision are: (i) we do not
want to disrupt the users’ habits and preferences in terms of apps used for track-
ing their activities, (ii) we want to build on existing large user bases, (iii) we
do not want to reinvent the wheel by re-implementing functionalities already
supported by development teams with years-long experience.

Whenever the e-Health app evolves by supporting new applications (or no
longer supporting certain applications), the Catalog of Supported Mobile Appli-
cations Updates, through the Datastore, the Third-party Applications Manager.
The Third-party Applications Manager responsibility is to keep the list of sup-
ported mobile apps up to date and provide the corresponding metadata to the
UD Adaptation Manager and the ED Adaptation Manager, when needed.

The e-Health app and back-end communicate via the Internet. Specifically,
the communication from the e-Health app to the back-end is REST-based and
it is performed by the Internet Connectivity Manager, which is responsible for
sending the Collected Data to the AI Personalization component in the back-
end. Communication from the back-end to the e-Health app is performed by the
User Process Handler which is in charge of sending the User Process to the
e-Health app via push notifications.

5 Components supporting Self-adaptation

The RA has five components used for self-adaptation. To accomplish its respon-
sibilities, each of these components implement a MAPE loop.

5.1 AI Personalization Adaptation

The main goal of the AI Personalization Adaptation is to keep track of the
clusters evolution and to enable the creation of new User Processes. It does it
through its MAPE loop depicted in Fig. 2. During its Monitor phase, the AI
Personalization Adaptation monitors the macro-clusters. In its Analyze phase
it determines if there are changes in the monitored macro-clusters. To do so,
the AI Personalisation Adaptation periodically queries the Clustering History
database. It compares the current clusters with the previously saved ones. If any

5 http://strava.com 6 http://swim.com

8 E. M. Grua et al.

Monitor Plan

Macro-clusters Have the macro-
clusters changed? Is

the change significant?

Plan	notifications	to	be	
sent

Send notifications to
the Development Team
and the Domain Expert

Analyze Execute

Fig. 2: AI Personalization Adaptation MAPE loop.

of the current ones are significantly different, then the AI Personalization Adap-
tation enters its Plan phase. The Plan phase gathers the IDs of the users and
macro-clusters involved in these significant changes. Since this change involves
the need of the creation of new User Processes for all of the users belonging to
the new clusters the Domain Expert must be involved in this adaptation. To
achieve this we have exploited the type of adaptation described in [11], which
considers the involvement of humans in MAPE loops. In particular, in [11] the
authors describe various cases in which a human can be part of a MAPE loop.
AI Personalization Adaptation falls under what the authors refer to as: ‘Sys-
tem Feedback (Proactive/foreground)’. This type of adaptation is initiated by
the system which may send information to the human. The human (i.e. Do-
main Expert) uses this information to execute the adaptation (by creating the
new User Processes necessary). To send the needed information to the Domain
Expert, AI Personalization Adaptation takes the gathered knowledge from the
Plan phase and gives it to Execute. Execute notifies (Fig. 1) both the Devel-
opment Team and the Domain Expert about the detected cluster change(s) and
relays the gathered information.

To determine if a cluster is significantly different from another we use a
parameter delta. This parameter is set by the Development Team at design time
and determines how different the stored information of one cluster has to be
from another one to identify them as unique. The Development Team is notified
as a precaution, to double check the change and verify that no errors occurred.

5.2 User Driven Adaptation Manager

The main responsibility of the UD Adaptation Manager is to receive the User
Process from the back-end and convert the contained Abstract Activities into
Concrete Activities. A Concrete Activity represents a specific activity that the
user can perform, also with the support of smart objects and/or corresponding
mobile apps. As an example, running is a concrete activity during which the user
can exploit a smart-bracelet to monitor their cardio rate as well as a dedicated
mobile app to measure the run distance and the estimated burned calories. A
Concrete Activity is designed as a class containing multiple attributes that is
stored on the smartphone. The attributes are:

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 9

Monitor Plan

User process Is the user process new? (Re)specify	the	user	
activities	based	on	

current	preferences	and	
relevant	installed	apps

Store the personalised
user process and notify

the user of the new
activities

Analyze Execute

Fig. 3: UD Adaptation Manager MAPE loop.

• Selectable: is True if the UD Adaptation Manager or the ED Adaptation
Manager can choose this Concrete Activity, when dynamically refining Abstract
Activities; False otherwise. It is set by the user via the user preferences.

• Location: it specifies if the activity is performed indoors or outdoors. This
attribute is used by the ED Adaptation Manager to choose the appropriate
Concrete Activity according to weather conditions (see Sect. 5.5).

• Activity category: it defines what type of category does the Concrete Activ-
ity fall under. E.g., for a fitness activity, it specifies a cardio or strength training.

• Recurrence: it tracks how many times the user has performed the Concrete
Activity in the past. It allows the UD Adaptation Manager to have a preference
ranking system within all the selectable Concrete Activities.

For each user, the Concrete Activities are derived from their preferences
stored in the Third-party Applications Manager. During its nominal execution,
the UD Adaptation Manager is in charge of refining the Abstract Activities
in the User Process into Concrete ones. To do this, it queries the Third-party
Applications Manager and exploits its knowledge of the Concrete Activities and
their attributes. After completing the task, the UD Adaptation Manager presents
the personalized User Process to the user as a schedule, where each slot in
the vector of Activity categories corresponds to a day. Therefore creating the
personalized user schedule of Concrete Activities.

Refining a User Process is required every time that the user is assigned with
a new process, to keep up with its improvements and/or cluster change. To this
aim, a dynamic User Process adaptation is needed to adapt at run-time the
personalized user schedule, in a transparent way and without a direct user in-
volvement. Fig. 3 depicts the MAPE loop of the UD Adaptation Manager. Once
it accomplishes its main task of refining the User Process, the UD Adaptation
Manager enters the Monitor phase of its MAPE loop, by monitoring the User
Process. The Analyze phase receives the monitored User Process from Monitor.
Analyze is now responsible to determine if the user has been assigned a new
User Process. If so, the UD Adaptation Manager converts the Abstract Activ-
ities in this new User Process into Concrete ones, taking into account the user
preferences. It makes this conversion by finding suitable Concrete activities dur-
ing the Plan phase. As all of the Abstract Activities have been matched with a
corresponding Concrete activity, the Execute phase makes the conversion, stor-

10 E. M. Grua et al.

ing this newly created personalized User Process and notifying the user about
the new activity schedule.

5.3 Smart Objects Manager

This component aims to maintain the connection with the user’s smart objects
and, if not possible, find alternative sensors to make the e-Health app able to
continuously collect user’s data, thus to perform optimally. To this aim, it im-
plements a MAPE loop, shown in Fig. 4, supporting the dynamic adaptation at
the architectural level of the smart objects. The Monitor phase is devoted to the

Monitor Plan

Connection status of
the smart objects

Has the connection
status (on/off)

changed?

If	not	connected,	
reconnect.	

If	reconnecting	doesn't	
work	notify	the	user.

If	notification	failed	find	a	
new	source	of	data

Execute the plan in a
sequential manner

Analyze Execute

Fig. 4: Smart Objects Manager MAPE loop.

run-time monitoring of the connection status with the smart objects. Connection
problems can be due to either the smart objects themselves, which can be out
of battery, or to missing internet, bluetooth or bluetooth low energy connectiv-
ity. The Analyze phase is in charge of verifying the current connection status
(received by Monitor) and see if the connection status with any of the smart
objects has changed. During the Plan phase the MAPE will create a sequential
plan of actions that the Execute will have to perform. All of the actions are
aimed at re-establishing the lost connection or at finding a new source of data.
For instance, if the smart-watch connected to the smartphone runs out of bat-
tery and the attempts to reconnect to it fail, the Smart Objects Manager will
switch to sensors inbuilt in the smartphone (such as the accelerometer).

5.4 Internet Connectivity Manager

The main purposes of the Internet Connectivity Manager are to (1) send the
Collected Data to the back-end and store them locally when the connection is
missing, and (2) provide resilience to the e-Health app’s internet connectivity.
As shown in the MAPE loop in Fig. 5, during the Monitor phase the Internet
Connectivity Manager runtime monitors the quality of the smartphone’s internet
connection. Analyze is then in charge of detecting whether a significant connec-
tion quality alteration is taking place. If so, the Internet Connectivity Manager
enters the Plan phase and it plans for an alternative. The alternative can include
switching the connection type or storing the currently collected data locally on

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 11

Monitor Plan

Internet connection
quality

Has the quality
significantly altered?

Change	the	mean	of	
connection	or	store	the	
data	locally	and	send	

when	possible

Establish new
connection or

store/send data

Analyze Execute

Fig. 5: Internet Connectivity Manager MAPE loop.

the smartphone. As a new connection can be established, the component sends
the data to the back-end to be used by the AI Personalization.

5.5 Environment Driven Adaptation Manager

One of the objectives of the e-Health app is keeping the users constantly engaged,
to ensure that they execute their planned schedule of activities. To this aim, the
ED Adaptation Manager plays an important role, which is essentially supported
by its MAPE loop, depicted in Fig. 6. The purpose of this component is to con-

Monitor Plan

Environment
 (weather and
geolocation)

Has the environment
changed significantly?

Change the Concrete
Activity and notify the
user of such change

Analyze Execute

If the current Concrete
Activity is not

appropriate, find an
appropriate alternative

Fig. 6: ED Adaptation Manager MAPE loop.

stantly check whether the currently scheduled Concrete Activity best matches
the runtime environment (i.e., weather conditions) the user is located in. To do
so, the ED Adaptation Manager monitors in run-time the user’s environment.
The Monitor phase periodically updates the Analyze phase by sending the en-
vironment data. This phase establishes if the environment significantly changed.
If so, it triggers the Plan phase that verifies whether the currently planned Con-
crete Activity is appropriate for the user’s environment. If it is not, it finds an
appropriate alternative and sends the information to Execute. Execute swaps
the planned Concrete Activity with the newly found one and notifies the user of
this change.

12 E. M. Grua et al.

6 Discussion

It is important to note that our RA is extensible so to support other domains
beyond fitness and mood. On the client side no changes are required, whereas the
only components which may need to be customized to a new application domain
are: (i) the Editor of Abstract Activities & Goals, so that it is tailored to the
different domain experts; and (ii) the Catalog of Supported Mobile Applications,
so that it now describes the interaction points with different third-party apps.

Abstract Activities allow Domain Experts to define incremental goals span-
ning over the duration of the whole User Process. In addition, User Processes
are defined at the cluster level (potentially including thousands of users) and
can cover large time spans (e.g., weeks or months). Those features make the
operation of the RA sustainable from the perspective of Domain Experts, who
are not required to frequently intervene for defining new goals or User Processes.

Furthermore, through the conversion from Activity Categories to Concrete
Activities, which takes place during the dynamic Abstract Activities refinement,
we accommodate both Type-to-Type adaptation (e.g., from the Cardio Activity
Category to the Running Concrete Activity) and the most common Type-to-
Instance adaptation (e.g., by using the Strava mobile app as an instance of the
Running Concrete Activity). Similarly, a Type-to-Type adaptation is reported
by Calinescu et al. [6] presenting an approach where elements are replaced with
other elements providing the same functionality but showing a superior quality
to deal with changing conditions (e.g., dynamic replacement of service instances
in service-based systems). In our approach, however, we go beyond, by replacing
activities with others providing different functionality to deal with changing
conditions. To the best of our knowledge, this adaptation type is uncommon in
self-adaptive architectures, despite quite helpful.

The components of the RA running on the smartphone can be deployed
in two different ways, each leading to a different business case. Firstly, those
components can be integrated into an existing e-Health app (e.g., Endomondo7

for sports tracking) so to provide personalization and self-adaptation capabilities
to its services. In this case the development team of the app just needs to deploy
the client-side components of the RA as a third-party library, suitably integrate
the original app with the added library, and launch the server-side components.
The second business case regards the creation of a new meta-app integrating
the services of third-party apps, similarly to what apps like IFTTT8 do. In this
case, the meta-app makes an extensive usage of the Third-party Applications
Manager component and orchestrates the execution of the other apps already
installed on the user device.

Finally, we are aware that our RA is responsible for managing highly-sensitive
user data, which may raise severe privacy concerns. In order to mitigate potential
privacy threats, the communication between the mobile app and the back-end is
TLS-encrypted and the payload of push notifications is encrypted as well, e.g., by
using the Capillary Project [16] for Android apps, which supports state-of-the-art

7 http://endomondo.com 8 http://ifttt.com

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 13

encryption algorithms, such as RSA and Web Push encryption. Eventually, we
highlight that, according to the privacy level required by the Development Team,
the components running in the back-end can be deployed either on premises or
in the Cloud, e.g., by building on public Cloud services like Amazon AWS and
execute them in a protected environment, e.g., behind additional authentication
and authorization layers.

7 Conclusions and Future Work

In this paper we presented a RA for e-Health apps. Its goal is to combine AI-
based personalization and self-adaptation. The RA achieves self-adaptation on
three levels: (i) adaptation to the users and their environment, (ii) adaptation
to smart objects and third-party applications, and (iii) adaptation according to
the data of the AI-based personalization, ensuring that users receive personalized
activities that evolve with the users’ run-time changes in behavior.

As future work we are realizing a prototype implementing the RA and de-
signing a controlled experiment to evaluate its effects on users’ behavior and
performance at run-time.

References

1. The industrial internet of things volume G1: reference architecture. Industrial In-
ternet Consortium (2019), https://bit.ly/2talimM

2. Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design of soft-
ware reference architectures. Information and Software Technology 54(4) (2012)

3. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S.,
Meissner, S.: Enabling Things to Talk: Designing IoT Solutions with the IoT Ar-
chitectural Reference Model. Springer Publishing Company, 1st edn. (2016)

4. Bauer, M., et. al: IoT Reference Architecture. In: Enabling Things to Talk: De-
signing IoT solutions with the IoT Architectural Reference Model (2013)

5. Bucchiarone, A., Lluch-Lafuente, A., Marconi, A., Pistore, M.: A formalisation of
adaptable pervasive flows. In: WS-FM. pp. 61–75 (2009)

6. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: En-
gineering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Software Eng. 44(11), 1039–1069 (2018)

7. Fan, H., Poole, M.S.: What is personalization? perspectives on the design and im-
plementation of personalization in information systems. Journal of Organizational
Computing and Electronic Commerce 16(3-4), 179–202 (2006)

8. Feljan, A.V., Mohalik, S.K., Jayaraman, M.B., Badrinath, R.: SOA-PE: A service-
oriented architecture for planning and execution in cyber-physical systems. In: 2015
International Conference on Smart Sensors and Systems (IC-SSS). pp. 1–6 (2015)

9. Fling, B.: Mobile design and development: Practical concepts and techniques for
creating mobile sites and Web apps. O’Reilly Media, Inc. (2009)

10. Fremantle, P.: A Reference Architecture for the Internet of Things. WSO2 White
paper (2015), https://bit.ly/2RMzCft

11. Gil, M., Pelechano, V., Fons, J., Albert, M.: Designing the human in the loop of
self-adaptive systems. In: International Conference on Ubiquitous Computing and
Ambient Intelligence. pp. 437–449. Springer (2016)

14 E. M. Grua et al.

12. Global Industry Analysts, I.: mhealth (mobile health) services - market analysis,
trends, and forecasts (2019), https://tinyurl.com/rbvdtc3

13. Grua, E.M., Hoogendoorn, M.: Exploring clustering techniques for effective re-
inforcement learning based personalization for health and wellbeing. In: 2018
IEEE Symposium Series on Computational Intelligence (SSCI). pp. 813–820. IEEE
(2018)

14. Grua, E.M., Hoogendoorn, M., Malavolta, I., Lago, P., Eiben, A.: Clustream-GT:
Online clustering for personalization in the health domain. In: IEEE/WIC/ACM
International Conference on Web Intelligence. pp. 270–275. ACM (2019)

15. Grua, E.M., Malavolta, I., Lago, P.: Self-adaptation in mobile apps: A system-
atic literature study. In: IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). pp. 51–62 (2019)

16. Hogben, G., Perera, M.: Project capillary: End-to-end encryption for push mes-
saging, simplified. (2018), https://tinyurl.com/y8n8btoc

17. IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM (2006)
18. Kim, H.K.: Architecture for adaptive mobile applications. Int. J. Bio-Sci. Bio-

Technol 5(5), 197–210 (2013)
19. Kim, K.j., Ahn, H.: Using a clustering genetic algorithm to support customer

segmentation for personalized recommender systems. In: International Conference
on AI, Simulation, and Planning in High Autonomy Systems. pp. 409–415. Springer
(2004)

20. Lopez, F.S., Condori-Fernández, N.: Design of an adaptive persuasive mobile ap-
plication for stimulating the medication adherence. In: International Conference on
Intelligent Technologies for Interactive Entertainment. pp. 99–105. Springer (2016)

21. Mizouni, R., Matar, M.A., Al Mahmoud, Z., Alzahmi, S., Salah, A.: A framework
for context-aware self-adaptive mobile applications SPL. Expert Systems with ap-
plications 41(16), 7549–7564 (2014)

22. Mohalik, S.K., Narendra, N.C., Badrinath, R., Le, D.: Adaptive service-oriented
architectures for cyber physical systems. In: IEEE Symposium on Service-Oriented
System Engineering, SOSE. pp. 57–62 (2017)

23. de Morais Barroca Filho, I., Junior, G.S.A., Batista, T.V.: Extending and instan-
tiating a software reference architecture for iot-based healthcare applications. In:
Int. Conf. on Computational Science and Its Applications. pp. 203–218 (2019)

24. Paschou, M., Sakkopoulos, E., Sourla, E., Tsakalidis, A.: Health internet of things:
Metrics and methods for efficient data transfer. Simulation Modelling Practice and
Theory 34, 186 – 199 (2013)

25. Shiffman, S., Stone, A.A., Hufford, M.R.: Ecological momentary assessment. Annu.
Rev. Clin. Psychol. 4, 1–32 (2008)

26. Volpato, T., Oliveira, B.R.N., Garcés, L., Capilla, R., Nakagawa, E.Y.: Two per-
spectives on reference architecture sustainability. In: Proceedings of the 11th Euro-
pean Conference on Software Architecture: Companion. pp. 188–194. ACM (2017)

27. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. Chapter in Handbook of Software Engineering (2017)

28. Williams, P.A.H., McCauley, V.: A rapidly moving target: Conformance with e-
health standards for mobile computing. In: 2nd Australian eHealth Informatics
and Security Conference (2013)

